8x^2=18(18+42)

Simple and best practice solution for 8x^2=18(18+42) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x^2=18(18+42) equation:



8x^2=18(18+42)
We move all terms to the left:
8x^2-(18(18+42))=0
We add all the numbers together, and all the variables
8x^2-(1860)=0
We add all the numbers together, and all the variables
8x^2-1860=0
a = 8; b = 0; c = -1860;
Δ = b2-4ac
Δ = 02-4·8·(-1860)
Δ = 59520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{59520}=\sqrt{64*930}=\sqrt{64}*\sqrt{930}=8\sqrt{930}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{930}}{2*8}=\frac{0-8\sqrt{930}}{16} =-\frac{8\sqrt{930}}{16} =-\frac{\sqrt{930}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{930}}{2*8}=\frac{0+8\sqrt{930}}{16} =\frac{8\sqrt{930}}{16} =\frac{\sqrt{930}}{2} $

See similar equations:

| -1/2x=1/2x-3 | | 10x-(2x+3)=8x-3 | | 1.25x^2-17=0 | | −69=7y−6 | | 7t+11=60 | | -5r2=-40 | | 2x=-4x-3 | | 72x=9x | | 10x+2(x+3)=8x-3 | | -10+5x=15+30x | | 9x–4x=55 | | 4+2x+1=3x+2 | | 5(x-8)-12=16x-96 | | 3m-28=10m | | (X-4)=(2x+10) | | 8x-9=4x-8 | | (×-4)=(2x+10) | | 6^x+1=7776^-4 | | k2=20 | | 3(g-7)=12 | | 3x^2-9x=36 | | 2x6−19=−9 | | -5x-5=5x-85 | | (9x-23)°+(7x+9)°=180 | | 7x-10=-40+4x | | 30+5x+10/2=2x-3 | | k6+5=21 | | -4x+8=x+68 | | T^2+8x+6=0 | | 5(x+5)-3x=20+7x | | 45=22+xx= | | 15^2=9(3x+10) |

Equations solver categories